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Abstract—The problem considered is that of the torsion of a finite elastic cylinder which is embedded
in an elastic medium of different shear modulus. By the use of integral transforms and the theory
of dual integral equations, the problem is reduced to that of solving a Fredholm integral equation
of the second kind. Numerical results have been displayed graphically.

1. INTRODUCTION

The problem of determining the torsional deformation of a semi-infinite, isotropic, homo-
geneous elastic solid when a circular cylinder is welded to its plane boundary and it is forced
to rotate about its axis was first considered by Reissner and Sagoci (1944), Sagoci (1944)
and Sneddon (1947). Sneddon (1966a) presented an integral transform solution for the
torsional deformation of a half=space and of a circular cytinder with a rigidly clamped
lateral surface. Bycroft (1956). Ufland (1959) and Gladwell (1969) solved the Reissner-
Sagoci problem for an clastic layer of finite thickness when the layer face is cither stress-
free or rigidly clamped. Freeman and Keer (1967) investigated a torsion probiem of an
clastic cylinder bonded to an clastic half-space. And later Freeman and Keer (1970) extended
their analysis to the torsion of a finite elastic rod which is partially bonded to a semi-infinite
elastic cylinder of the same radius which in turn is embedded in an elastic half-space. Luco
(1976) investigated the torsion problem of a rigid rod which is embedded in an elastic layer,
the whole being perfectly bonded to a half-space with different shear modulus, Singh and
Dhaliwal {1977) considered the Reissner-Sagoci problem for an elastic layer under torsion
by a pair of circular discs on opposite faces. Dhaliwal er al. (1979) solved the Reissner—
Sagoci problem for a semi-infinite ¢lastic cylinder embedded in a half-space. Chebakov
(1970) considered the Reissner-Sagoci problem for a finite cylinder with the curved surface
and bottom face fixed. Karasudhi er af. (1984) considered Luco's problem under the
assumption that the embedded rod was elastic rather than rigid. Recently Gladwell and
Lameczyk (1989) solved the Reissner-Sagoci problem for a finite cylinder with stress-free
curved sides and a fixed base.

In this paper we consider the problem of the torsion of a finite elastic cylinder which
is embedded in an elastic layer with different shear modulus. It is assumed that the bottom
flat surface of the cylinder and the surrounding layer is rigidly fixed.

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

We are assuming that an clastic cylinder of radius a and shear modulus u, is embedded
in an elastic medium whose shear modulus is ., as shown in Fig. 1. It is assumed that the
cylinder is perfectly bonded to the surrounding elastic layer and a torque is applied to the
cylinder, through a rigid disc of radius ¢, which is bonded to its top flat surface. In terms
of cylindrical polar coordinates (r, 0, =), the displacement field and corresponding non-zero
stress components are given by
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Fig. 1. Torsion of an elastic cylinder bonded to a dissimilar clastic layer,

o oo
u=0, v=v(rz)., w=0, o.(r:)=puz:, ou(r,2)=pl = —~) H
az ar r
and the equation of equilibrium is given as follows:
v law v
3 =5 A ey = ()L )

art + ror r’ =

Using the method of separation of variables, it is easy to show that the following are basic
solutions of eqn (2) for o(r,z):
(1) Ji(¢ryexp (£¢2), (I Y\¢Gryexp(£<2),

(I I,(&rycos(&éz) or [, (&r)sin(&2),

(V) K,(¢rycos(&z) or K (Erysin(&2), (V) rz,r l/r.z/r.
where J,, Y, are Bessel functions of the first and second kind and of order v respectively ;
1,, K, are modified Bessel functions of the first and second kind respectively and of order v
and ¢ is a real parameter.

We assume that the rigid disc bonded to the cylinder is turned through a small angle

¢ and that the height of the cylinder and the layer is 5. We thercfore consider the problem

of determining the stress and displacement field in the cylinder and the layer with the
following boundary and continuity conditions:

v(r,0) =er, 0<r<ec, (3)
05:(r.0) =0, c<r<a, 4)

G0.(r,0) =0, r>a, (%)
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v(r,b)=0, r<a, (6)
ir,p)=0, r>a, M
v(a,2) =ié(a,z2), 0<z<h, 8)
os(a.2) = 64(a,2), 0<z<b, 9

where v, o,. and g, are the non-zero displacement and stress components in the cylinder
while &, 6,. and d.,¢ are their counterparts in the layer.

In the solution of this problem we shall make use of the following notations from
Sneddon (1951) : the Fourier operators #, and # are defined by the equations

2 /2 o
Flf@);:=8= (:—:) L f@)sin(§2) dz,
7 2 =
Flf@);z=¢8= (;) J:] f(z)cos (£2) dz,
the Hankel operator J, is defined by the equation

H (i —z]= L ¢S (8. (&r)dg,

and the Abel operator of the first kind, .o, is defined by the equation

2 12 [
AVCHEYE (n) f SO =171 ds,

[

then we have the following properties of these operators

Fh=F, F'=F, H'=H, &/f'[f(r);t]zad}-d,[rf(r);l].

3. DERIVATION OF THE DUAL INTEGRAL EQUATIONS

In this section we introduce a combination of the basic solutions for v(r, z) obtained
in Section 2, by means of this combination we are able to reduce the problem of solving
the mixed boundary problem to that of a pair of dual integral equations.

For 0 < r < a, we may assume the following representation:

0(r,2) = aor(b—2)+ A&~ A(E) sinh [E(b—2)]; & = r]+ ‘fl &' B, cos (£, (&1),

(10)

and for r > a we may assume that
ﬁ(rsz) = Z En.|cn COS(:,:)K;(&,,I’), (ll)
A=l

where gy = ¢/b, while 4, B,, C, and &, are to be determined later.
From eqns (1) we have
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Tm(r.2) = = A [AQ) sinh [$(b—)]: S~ r+p, 3 B, cos (5,2 (5ar),

LI

ar(!(r ) —H: Z C COS(Sm-)[\ (Sn

Ope(r.2) = =, (A cosh [S(h=2)]: E > rf—p, 3 B, sin (D (Er) —agu,r,

o
n=1

69;(’.:) = —Ha Z Cn Sin(én:)K!(inr)’

n=|
The conditions (6) and (7) may be satisfied by taking
cos{&,h) =0
which gives
o= Qu=Dn/2b, n=1273 ...
The condition (8) yiclds

aga(h—z)+ K [ A(D) sinh [E(b—2)]; & - a)

Z Cu CK (Gaat) = B (S,@)] cos (£,2),

L

and the condition (9} yiclds

£

HAAE) sinh [E(b—2)]; E—>al = Y [BL(Ea)+iC, Ky (E,a)] cos (£,2),

now |

where ji = p./u,.
Since {cos ($,2) ), - 1,25, are orthogonal over the interval (0, b) and

sinh[E(h—)]cos({,z)dx =

-r . g “cosh (sb)
1] (g-+5n) )

b
j (hb—=z)ycos(l,0)dz =

gn

egns (17) and (18) lead to the following equations

2 h(¢h) (S )
- B[ () + C K (Spq) = 2 {J A(g)cos (%_) ) +a,a} Gi(n),
0 ‘- +‘~gn Sa
h(<h)J,
B, 1, (S, a) +aC Ky (Goa) = 5'( ¢ ‘ff_(‘i)ff”«:_i‘ ia) ds = Gi(n).
] "

Solving eqns (21) and (22) for B, we obtain

(14)

(15)

(16)

(17

(18)

(19

(20)
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B, = [G:(mK,(5.a) — 4G (M) K:(Caa))/A(n), (23)

where
A(n) = I,(§,a) K ($,a) + il (§.a) K (,a). (24)

From eqn (15) we find that the condition (5) is identically satisfied and boundary
conditions (3) and (4) will be satisfied if 4(&) is the solution of the following dual integral
equations:

K[ A sinh (¢b): & — r]+ i &' B (Er) =0, r<g, 2%

n= |

H (A cosh(Ch): E—r]l = —aer, c<r<a. (26)

4. REDUCTION TO INTEGRAL EQUATION OF FREDHOLM TYPE

We can reduce the problem of solving the dual integral equations (25) and (26) to that
of solving an integral equation of Fredholm type of the second kind by means of an integral
representation for (), which identically satisfies eqn (26).

If we take
H\12 @ =)= (=)', 1<,
do(t) = — (5) ta?—13)"h?, c<t<a, @n
0, t>a,
we have
y;[‘bn(’); t={] = “‘j ’z-l|(ff)d", (28)

0, 0<Lr<e,
HAF bt =&l =r} =S —r, ¢<r<a, (29)
0, r>a.

It is easy to show by using Sneddon (1966b) that if we take

dy

= cosh (2h)

A(S) F o)+ do(n); 1= 8], (30

where ¢(1) is 2 new unknown function defined in (0, 00) such that ¢(¢) = 0 for ¢t > ¢, then
eqn (26) will be satisfied identically.

Substituting eqn (30) into eqns (21) and (22) and using the following integrals given
by Erdelyi (1954):

© £ s 9 J': d}:
L ¢ sin gifl é;fa) 2 = ¢, sinh (50K (Ga), 1<a, Gh
sin(@n/\Gayd _ (&K (Ea), t<a, (32)

0 &+ &l

we obtain
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Gi(n) =g, (M+g.:(n)+g,3(n), G:(n) =g, (n)+g.:(n), (33)
where
200&!1 2 b e
gu(n) = b (*) f #() sinh (0K (£ a) dr,
n 0
2 *n 2 t2 {a )
Gi2(n) = a;g (-) J. @o(0)sinh (5,0K, (£.a) dt,
n [
-
gll(n) - baéoas
2 . 2 12 ¢ .
garl) = 22 (;) L«b(z) sinh (&,0K:(&,a) .
2 2 12 fa
g22(n) = agé" (7—:) L @o(2) sinh (£, 1)K, (,a) dt, (34)

and hence from eqn (23), we obtain that

B, = {[921(")[(:(5..“)"‘ﬁgu(")Kz(fnﬂ)]
+ (922K (Gr@) — Ag 12 (M K (§r)] — ig 1 (MK (S,a) } /A(n). (35)

Operating on eqn (25) by x~'o/1 '[r; x] and using the following results :

X el PP [E AR E ] = &) = FL[AQ) - . (36)
2 12
x MGy r - x) = (;t) sinh (§,x), (37
we obtain

F [A() sinh (Eb); = x]+ (%) i nil & 'Bysinh(6,x) =0, O0<x<c.  (38)

Using expressions (30) and (35), we get

LA sinh (E6): £ — x] = ay () — 2 f B() dr J (1 +€¥%) " sin (&) sin (x) d&
Faoba(x) - ‘ii‘wf bol0) dt f " (1+e%) - sin @ sin (€x)dE, (39)

and

12 = < L
(*21;) Z:‘ ¢r !B, sinh (¢, x) = aoj; ¢(1)L}_:! Q (m) sinh (1) sinh (i.-f)] dt

+a, J‘u ¢D(:)[ i Q(n) sinh (£,1) sinh (é.,x)] dr+ay,R(x), (40)
0

nw

where
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4
0() = s (1=DK GG,

20 (2\? & K.(Ea)sinh (&,2)
Rx) = ‘T(E) O

40

n=1

Substituting from (39) and (40) into eqn (38) we find that ¢(s) must satisfy the following
integral equation:

(%) —J'c SOM(x. D dr—f SON(r.0dt = —f(x). 0<x<c, 2)
(] 0

where
£03) = o) —L" Bo(OM(x, 1) di - J $o(ON(x, 0 dr+ R(x), @)
Mx, 1) = j—t L " (1 +¢¥%)~ sin (0) sin (6x) dé, (44)
NG D) = ,ilQ"" sinh (£,0) sinh (¢,). 45)

For large n,
Q (n) sinh (&,0) sinh (§,x) = O(exp[—¢,(2a—x—1)]),

and hence the convergence of the scries in eqn (45) is fast.

To calculate the torque T necessary to produce the prescribed rotation, of the rigid
disc bonded to the cylinder, as given by condition (3) we need to calculate the expression
for a,. at = = 0. Now from eqns (14) and (30), we get

0o:(r,0) = —p, A\ [A(§) cosh (Eb); & — rl—agpr
= —ay K (F D)t 58— rh—ap K {F [Po(0); t = &) &> r}—apuyr,

r<c, (46)
and we find that
[z 100 =i e nar=o, @
KT (85 Emrh = = DT LSO: =i Er @)
The expression for Tis given by
T=-2n J: riay.(r,0)dr. ' (49)

Using (46), (47) and (48) in (49), we find that
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-
‘

tp(r) de. (50)

nuect

T =

S HE
42t -5
2h +4em) bl

5. PARTICULAR CASES

Cuse (a) u, — «
Letting ; — x in the results of the previous section, we get the results for the case in
which the elastic cylinder is embedded in a rigid medium as a limiting case. Since

l~ﬂ 1 |
A T LEOK (e BT

we obtain the expression for the kernel

7 4 . Kl(:nll) . . .
1\' X, = - el N - 3 X
(x.0) nh”; 1) sinh (Z,¢) sinh (£, ),

and

R(-\‘) = - 2fl (;:)‘ : z’: S'inh (‘:"f‘)'

b ne1 Il(:nli)gr;

for g1y — . With these modifications the solution for this case is given by eqns (42) and
(50).

Cuse (h) i, =0
[n this case, ifwe let gy — 0, we get the solution for the case in which the elastic cylinder
is free of stress on its curved surface. And

| -4 ! N 0
A~ LE@K G T

hencee the kernel M(x, 1) becomes

4

: A’l(:n l)
A’V(.\'.I) = nh z 8 ‘

sinh (2,1) sinh (£, x),

e " (3.1) sinh (S, x)

and R(x) =0, as py — 0 and these results are in agreement with Gladwell and Lemczyk
(1989).

6. NUMERICAL RESULTS AND CONCLUSIONS

Numerical values of ¢(x) for x = (0.0,0.1,0.2, .. .. 1.0)c have been calculated from the
integral eqn (42) by reducing it to algebraic cquations and hence the numerical values
of the dimensionless ratio of torque 7/7, have been calculated from eqn (50), where
Ty = 16p,e¢*/3 is the torque for the corresponding Reissner-Sagoci problem for the semi-
infinite space.

Numerical values of 7/T, have been calculated tor the following values of d/c. a’c and

=
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b/c =0.2(0.1)0.5.1.0,2.0.10.0; a/c = 1.0(0.2)2.0,3.0(1.0)10.0;

f£=000520;and g- x,

and these have been displayed in Figs 2-5.

b/c-0.2,0.3,04,05,1.0,20,10.0

1111/
i

a/c

Fig. 2. Values of 77T, displayed against afe for hle =0.2,03,04, 0.5, 1.0, 2.0, [0.0 and 4 = 0.0.
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Fig. 3. Values of T/T, displayed against a/c for bjc = 0.2, 0.3, 0.4, 0.5,1.0.20.10.0and ji = 0.5.
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Fig. 5. Values of 777, displayed against a/c for bjc = 0.2,0.3,0.4,0.5, 1.0, 2.0, 10.0 and g~ 0.

From the figures. we observe that the torque T decreases as the height b of the cylinder
increases and the torque increases as the radius o of the cylinder increases, We also observe
that the ratio 7/T, approaches to | with the simultaneous increase of g/c and b/c to infinity.
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Table 1. Numerical values of T'T, for 8, = 0. B, =0 (Kara-
shudhi et al.) a:c = 1. i - o (He and Dhaliwal)

ha = b.a* 1.0 2.0 10.0
Karashudhi ez al. 0.80 0.59 0.14
0.69 0.52 0.12 Quadratic
0.62 0.45 0.10 Exponential
Linear
He and Dhaliwal 0.41 0.21 0.09

*The thickness of the elastic layer is taken as 4 in
Karashudhi et al. and as & in He and Dhaliwal and a is the
radius of the elastic cylinder.

We will now compare our numerical results with those of Karashudhi et al. (1984).
We extrapolate their numerical values of T/T, given in Table 5 for f, = 0; f, = 1.0, 0.75,
0.50. 0.25 and find the values of T/T, for #, =0, f. = 0. The results are obtained by
using three different methods of extrapolation, namely linear, quadratic and exponential
approximations. Our corresponding numerical values of T/T, are obtained for a/c = 1.0
and fi — oo0. The numerical values of T/T are given in Table 1.

We notice from the comparison of the above numerical values that when the layer
thickness is ten times larger than the radius of the elastic cylinder, our results give only
marginally lower values of 7/T, as compared to theirs. But when the ratio of h/a = bja is
smaller, the values of T/T, are considerably lower in our case, which shows the effect of
our three-dimensional treatment of the problem.

Acknowledgements—The authors are thankful to reviewers for their coastructive suggestions which have helped
us to improve the quality of the manuscript.
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