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Ab!>trad-The problem considered is th,lt of the torsion ofa finite elastic cylinder which is embedded
in an elastic medium of different shear modulus. By the use of integral transforms and the theory
of dual integral equations. the problem is reduced to that of solving a Fredholm integral equation
of the second kind. Numerical results have been displayed graphically.

I. INTRODUCTION

The problem of determining the torsional deform.ttion of a semi-infinite. isotropic. homo­
geneous clastic solid when a circular cylinder is welded to its plane boundary and it is forced
to rotate about its axis W'1S first considered by Reissner and Sagoci (1944). Sagoci (1944)
and Sneddon (1947). Sneddon (1966a) presented an integral transform solution for the
torsional deformation of a half-sp'lce and of a circular cylinder with a rigidly clamped
lateral surface. Bycroft (1956). Ulland (1959) and Gladwell (1969) solved the Reissner­
S;.goci problem for an clastic layer of linite thickness when the layer face is either stress­
free or rigidly clamped. Freeman and Keer (1967) investigated a torsion problem of an
clastic cylinder bonded to an clastic half-space. And later Freeman and Keer (1970) extended
their analysis to the torsion ofa finite clastic rod which is partially bonded to a semi-infinite
clastic cylinder of thc same radius which in turn is embedded in an elastic half-space. Luco
(1976) investigated the torsion problem of a rigid rod which is embedded in an clastic layer.
the whole being perfectly bonded to a half-space with difTerent shear modulus. Singh and
Dhaliwal (1917) considered the Reissner-Sagoci problem for an elastic layer under torsion
by a pair of circular discs on opposite faces. Dhaliwal et £II. (1979) solved the Rcissner­
Sagoci problem for a semi-infinite clastic cylinder embedded in a half-space. Chebakov
(1970) considered the Reissner-Sagoci problem for a finite cylinder with the curved surface
and bollom face fixed. Karasudhi et £II. (1984) considered Luco's problem under the
assumption that the embedded rod was elastic rather than rigid. Recently Gladwell and
Lamczyk (1989) solved the Reissner-Sagoci problem for a finite cylinder with stress-free
curved sides and a fixed base.

In this paper we consider the problem of the torsion of a finite elastic cylinder which
is embedded in an elastic layer with different shear modulus. It is assumed that the bottom
flat surface of the cylinder and the surrounding layer is rigidly fixed.

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

We arc assuming that an clastic cylinder of radius a and shear modulus III is embedded
in an elastic medium whose shear modulus is }.J2 as shown in Fig. I. It is assumed that the
cylinder is perfectly bonded to the surrounding elastic layer and a torque is applied to the
cylinder. through a rigid disc of radius c. which is bonded to its top flat surface. In terms
ofcylindrical polar coordinates (r. O. =). the displacement field and corresponding non-zero
stress components arc given by
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Fig. I. Torsion of an elastic cylinder bonded to a dissimilar clastic layer.

and the equation of equilibrium is given as follows:

(2)

Using the method of separation of variables, it is easy to show that the following are basic
solutions of eqn (2) for dr, z) :

(l) Jl(er)exp(±e=), (II) yl(er)exp(±ez),

(III) II (~r) cos (ez) or II (er) sin (~=),

(IV) KI(~r)cOs(ez) or K,(~r)sin(~z), (V) rZ,r, I/r,z/r;

where J v , Y, are Bessel functions of the first and second kind and of order v respectively;
I" K, arc modified Bessel functions of the first and second kind respectively and of order v

and ~ is a real parameter.
We assume that the rigid disc bonded to the cylinder is turned through a small angle

£ and that the height of the cylinder and the layer is h. We therefore consider the problem
of determining the stress and displacement field in the cylinder and the layer with the
following boundary and continuity conditions:

~'(r, 0) = u. °~ r < c.

<1'o:(r, O) = 0, c ~ r < a,

<10:(r,0) = O. r> a.

(3)

(4)

(5)
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t'(r,b) = 0, r < a, (6)

t;(r,b) = 0, r>a, (7)

t'(a, z) = li(a, :), o~ z ~ b, (8)

O'rl/(a,z) = urli(a,z), o~ z ~ b, (9)

where t', O'(J: and O'rl/ are the non-zero displacement and stress components in the cylinder
while li, U9: and Url/ are their counterparts in the layer.

In the solution of this problem we shall make use of the following notations from
Sneddon (1951): the Fourier operators S;. and !Fe are defined by the equations

(
2)112 roo

!F.[f(z);z .... ~l= 1t Jo !(z)sin(~z)dz,

(
2)112 (Xl

!Fe[f(Z); Z .... ~] = n Jo !(z) cos (e:)dz,

the Hankel operator .f{'. is defined by the equation

and the Abel operator of the first kind, s/ l , is defined by the equation

(
2)112 rr

.wl[f(t);t .... r]= n Jo!(t)[r2-t2
]-1/2 dt,

then we have the following properties of these operators

3. DERIVATION OF THE DUAL INTEGRAL EQUATIONS

In this section we introduce a combination of the basic solutions for v(r, z) obtained
in Section 2, by means of this combination we are able to reduce the problem of solving
the mixed boundary problem to that of a pair of dual integral equations.

For 0 ~ r < a, we may assume the following representation:

<Xl

v(r, z) = aor(b - z) +.f{' 1[~- 1A(~) sinh [~(b - z)] ; e.... r] + Len-I Bncos (en:)l, (enr),
n_ I

(10)

and for r > a we may assume that

00

Ii (r, z) == L ~n- I en cos (enz)K1 (enr),
n-I

where ao =sib, while A, Bn, en and en are to be determined later.
From eqns (I) we have

(II)
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"
G"rt/(r,:) = -PIX~[A(~)sinh[~(b-.:)J; ~""r]+PI L B~cos{~~.:)lc{;~r), (12)

~ I

,
ci'lI(r,:) = -Pc L C cos(~~;)Kc(;~rl, (13)

~~I

,.
(1o:!r,.:) = -p,.Jt",[A(;) cosh [~(h-.:)J: ~ .... rJ -Ill L B~ sin (~~.:)ll (~~r) -ao/llr, (14)

,,=1

.,-

cill:!r,':) = -Pc L C sin(~~;)KI(~~r). (15)
,,= I

The conditions (6) and (7) may be satisfied by taking

which gives

The condition (8) yields

~~ = (211- 1)n/2b, 11 = 1,2,3, ... (16)

(

= L ¢" '[c..K,(~"a)-IJ~I'(~na)]cos(~".:), (17)
,,- I

and the condition (9) yields

(0

Jr'2[A(¢)sinh[¢(h-.:)]: ~-al = L [1J,.I2(~"a)+liCnK2(~na)]cos(¢,,:). (18)
'I-I

where ji. = P 21111 •

Since {cos(~,,':)}n_I.U. are orthogonal over the interval (O,h) and

fh ~ cosh (~h)

sinh [e(h - .:lJ cos (.;~:) <.I.: = ~'(-a---~)'--'\) (, +..,,,

[b (h-=)cos(~".:)d: = .)~,
Jo ~1l

eqns (17) and (18) lead to the following equations

") ~ {f'~ f A(f) cosh (=h)J (fa) a a}_ B I (= ) C L' (- ) = -,,~ .,., (, I., d : + _lJ_ = G (,)" , ..,~a + ".n., C;"a b : + (, -2 I I.
o '" <;"

Solving eqns (21) and (22) for B" we obtain

(19)

(20)

(21 )

(22)
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(23)

(24)

From eqn (15) we find that the condition (5) is identically satisfied and boundary
conditions (3) and (4) will be satisfied if A(~) is the solution of the following dual integral
equations:

70

Jf' d~- I A(~) sinh (~b) ; ~ ...... r] + I ~~- I B./1(~.r) = O. r < c. (25).= I

(26)

4. REDUCTION TO INTEGRAL EQUATION OF FREDHOLM TYPE

We can reduce the problem of solving the dual integral equations (25) and (26) to that
of solving an integral equation of Fredholm type of the second kind by means of an integral
representation for A(~). which identically satisfies eqn (26).

(fwe take

t < c.

c < t < a.

t> a.

(27)

we have

{

D. °~ r < c,

.Yf'1 {§,[¢u(t); t ...... ~l; ~ ...... r} = -r, C < r < a.

0, r> a.

It is easy to show by using Sneddon (1966b) that if we take

(28)

(29)

(30)

where ¢(t) is a new unknown function defined in (0. (0) such that "'(t) = 0 for t > c, then
eqn (26) will be satisfied identically.

Substituting eqn (30) into eqns (21) and (22) and using the following integrals given
by Erdelyi (1954):

t < a. (31)

we obtain

(32)
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2a ~ (2)1 Z Ca
9zz(n) = f it Jo </>o(t) sinh (~"t)K2(~"a)dt,

and hence from eqn (23), we obtain that

(34)

B" = {[921(n)KI(~"a)-1l911(n)K2(~.a)1

+ [922(n)K I (;"a) -,119 dn)K2(~"a)] -,119 13(n)K2(~"a)} Id(n). (35)

Operating on eqn (25) by x- Isli' [r; xl and using the following results:

.C I.w " {r-*' I [~ - 1A(;) ; ~ ..... rI ; r ..... ~} = .'F, [A (~); ~ .... xJ,

we obtain

(36)

(37)

(

") .r,
.'FAA(~)sinh(~b);~""xl+ : III L ~n-IBnsinh(~nx)=O,

TC "_I

Using expressions (30) and (35), we get

o~ x < c. (38)

and

(2)112 '"L Ie [>:> ]- L e,,- I B" sinh (~"x) = ao </J(t) L Q(n) sinh (~"t) sinh (e"x) dt
TC "-I 0 ._1

+ao fa </Jo(t) [ f Q(n) sinh (~"t) sinh (~"X)Jdt +aoR(x), (40)Jo "- t

where
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(41)

Substituting from (39) and (40) into eqn (38) we find that l/J(t) must satisfy the following
integral equation:

l/J(x) - f l/J(t)M(x, t) dt - f l/J(t)N(x, t) dt = -/(x), 0 ~ x ~ C, (42)

where

I(x) = l/Jo(x) - f l/Jo(t)M(x, t) dt- La l/Jo(t)N(x, t) dt+ R(x), (43)

'rJ

N(x, t) = L Q(n) sinh (e"t) sinh (e"x). (45)
"- l

For large n,

and hence the convergence of the series in elln (45) is fast.
To calculate the torque T necessary to produce the prescribed rotation, of the rigid

disc bonded to the cylinder, as given by condition (3) we need to calculate the expression
for (1u: at == O. Now from eqns (14) and (30), we get

(1u:(r,O) = -IL ,j(', [A(~) cosh (~b); ~ -+ r]- aulL Ir

= -auIL,.If, {3",[q,(t); t -+ ~J; ~ -+ r} -auIL,.If, {3".[q,u(t); t -+~; ~ -+ r} -GulLlr,

r < c, (46)

and we find that

f r2
.1f I {3"'[l/Jo(t); t -+ eJ ; e-+ r} dr = 0, (47)

The expression for T is given by

(49)

Using (46), (47) and (48) in (49), we find that
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(50)

5. PARTICL'LAR C\SES

Case (a) II: -+ x
Letting II: -+ x in the results of the previous section. we get the results for the case in

which the elastic cylinder is embedded in a rigid medium as a limiting case. Since

we obtain the expression for the kernel

and

., (1)1: , .' h (" .)_tl _ '\ SIO '>",'\
R(x) = - ' L..'-

h 7t "_ I II (~"tl)~'; ,

for JI: -x,;. With these modifications the solution for this case is given hy eqns (42) and
(50) .

Case (h) JI: - ()

In this ease, if we let II: -+ 0, we get the solution for the case in which the elastic eylinder
is free of stress on its curved surface. And

I - II
-+

~(II) 1:(~ntl)KI(~ntl)'

hence the kernel N(x, t) becomes

as II: -+ 0,

and R(x) = 0, as II: -.0 and these results are in agreement with Gladwell and Lemczyk
(llJSlJ).

6. NUMERICAL RESULTS AND CONCLUSIONS

Numerical values of 4>(x) for x = (0.0,0.1. 0.2, .... 1.0)(' have been calculated from the
integral eqn (42) by reducing it to algebraic equations and hence the numerical values
of the dimensionless ratio of torque TlTo have heen calculated from eqn (50), where
To = 16111f.c1/3 is the torque for the corresponding Reissner-Sagoci problem for the semi­
infinite space.

Numerical values of TlTo have been calculated for the following values of hie. a,'c and
{I = 11:/ fli :
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ble = 0.2(0.1 )0.5.1.0.2.0.10.0; ale = 1.0(0.2)2.0,3.0(1.0) 10.0;

ii = 0.0.0.5.2.0; and ji -+ x;.

and these have been displayed in Figs 2-5.
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From the figures. we observe that the torque T decreases as the height b of the cylinder
increases and the torque increases as the radius a of the cylinder increases. We also observe
that the ratio TIToapproaches to 1 with the simultaneous increase of ale and ble to infinity.
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Table I. :-.lumerical values of TT. for PI = O. P~ = 0 (Kara­
shudhi et al.) a:c = l. P. - x; (He and Dhaliwal)

h.a = ba" 1.0 2.0 10.0
Karashudhi et al. 0.80 0.59 O.l~

0.69 0.52 0.12 Quadratic
0.62 0.45 0.10 Exponential

Linear
He and Dhaliwal OAI 0.21 0.09

"The thickness of the elastic layer is taken as h in
Karashudhi et al. and as b in He and Dhaliwal and a is the
radius of the elastic cylinder.

865

We will now compare our numerical results with those of Karashudhi et al. (1984).
We extrapolate their numerical values of TlTo given in Table 5 for PI =0; P2 = 1.0, 0.75,
0.50, 0.25 and find the values of T/ To for PI = 0, P2 = O. The results are obtained by
using three different methods of extrapolation, namely linear, quadratic and exponential
approximations. Our corresponding numerical values of TITo are obtained for ale = 1.0
and ii - 00. The numerical values of TlToare given in Table I.

We notice from the comparison of the above numerical values that when the layer
thickness is ten times larger than the radius of the elastic cylinder, our results give only
marginally lower valucs of TITn as compared to theirs. But when the ratio of hla = bla is
smaller, the values of TIToare considerably lowcr in our case, which shows the effect of
our three-dimensional treatment of thc problem.
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